COURSE INFORMATON					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
STATISTICAL PHYSICS & THERMODYNAMICS	PHYS541	1	3 + 0+0	3	10

Prerequisites

Language of Instruction	English
Course Level	Postgraduate
Course Type	Compulsory
Course Coordinator	Prof. Dr. Necdet Aslan
Instructors	
Assistants	
Goals	
Content	

Learning Outcomes	Teaching Methods	Assessment Methods
1) Fundamentals of statistics	1,2	A,B,C
2) Fundamentals of thermodynamics	1,2	A,B,C
3) Quantum statistics	1,2	A,B,C
4) Kinetic theory of gases	1,2	A,B,C
5) Magnetism and properties	1,2	A,B,C
6) Thermodynamics cycles	1,2	A,B,C

Teaching Methods:	1: Lecture, 2: Question-Answer
Assessment Methods:	A: Testing, B:Course project, C: Homework

COURSE CONTENT				
Week	Topics	Study Materials		
1	INTRODUCTION			
2	DISTRIBUTION FUNCTIONS	Distributions		
3	INTERACTION AMONGST MACROSCOPIC SYSTEMS	Partition function		
4	THERMODYNAMICS LAWS	0. law		
5	APPLICATIONS OF THERMODYNAMICS	1. & 2. law		
6	STATISTICAL THERMODYNAMICS			
7	APPLICATIONS OF STATISTICAL THERMODYNAMICS			
8	ADVANCED QUANTUM STATISTICS	Microscopic systems		
9	ADVANCED MAGNETISM APPLICATIONS			
10	FERRO-PARA-DIA MAGNETISM DEFINITIONS	magnetism		
11	ADVANCED GASES KINETIC THEORY	gases		
12	FUNDAMENTALS OF PLASMA PHYSICS	plasma		
13	THERMODYNAMICS CYCLES			
14	THERMODYNAMICS CYCLES APPLICATIONS AND TECHNOLOGY			

RECOMMENDED SOURCES				
Textbook Introduction to Plasma Physics and Controlled Fusion				
Additional Resources				

MATERIAL SHARING					
Documents					
Assignments	10 homeworks				
Exams	1 midterm, 1 final				

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-term	1	30		
Homework	2	20		
Final	1	50		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50		
Total		100		

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes		Contribution				
		1	2	3	4	5	
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х	
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х	
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,				Х		
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,				Х		
5	Uses the academic sources, the computer technology and the related devices,		Х				
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,		Х				
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					Х	
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.		Х				

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Excluding the exam week: 14x Total course hours)	14	3	48			
Hours for off-the-classroom study (Pre-study, practice)	14	12	168			
Mid-terms	1	3	3			
Assignment	2	12	24			
Final examination	1	3	3			
Total Work Load			246			
Total Work Load / 25 (h)			9.84			
ECTS Credit of the Course			10			